PATHWAY IDENTIFICATION DURING SUCCESSFUL ISCR-ENHANCED BIOREMEDIATION OF A TCE DNAPL SOURCE AREA

James G.D. Peale, RG Erik I. Bakkom, PE (Maul Foster Alongi)

> Josephine Molin Andrzej Przepiora Jim Mueller Fayaz Lakhwala (Adventus Americas Inc.)

TOPICS

- Site Overview
- Bench Test
- Field Pilot
- Full-Scale Data
- Summary

Site Overview

- Former MGP waste site redeveloped for manufacturing in 1970s
- 80+ acres adjacent to Portland Harbor NPL site
- TCE or TCE+wastewater released from a recycling system (1980-1985)
- Impacts from release discovered in 2002

Site Overview

- Source Zone
 - Impacts from about 15-34 m bgs
 - TCE up to 592,000 ug/L (DNAPL levels)
 - No TCE DNAPL observed
 - Cis-1,2-DCE up to 90,800 ug/L
 - Very little VC (< 100 ug/L)</p>
- Riverbank
 - Impacts from about 24-43 m bgs
 - TCE up to 8,640 ug/L
 - Cis-1,2-DCE up to 34,000 ug/L
 - VC up to 5,170 ug/L

Site Overview

MAUL Foster Algneg

Bench and Pilot Test Summary

- Comparative Bench Test
 - Multiple columns and runs, TCE spikes up to 870 mg/L
 - EHC+KB-1 outperformed other amendments
 - EHC ZVI+hydrophilic organic carbon
 - KB-1 *Dhc* consortium
- Source Area Pilot EHC+KB-1 PRB
 - TCE from DNAPL levels (93 mg/L) to ND in 6 months
- Riverbank Pilot EHC+KB-1 PRB
 - All CVOCs to ND in ~12 months

Technology Summary

EHC

- Powdered blend of zero-valent iron (ZVI) and hydrophilic organic carbon
- Creates strongly reducing conditions in groundwater
 (ORP ~ -500 mV) in situ chemical reduction (ISCR)
- ISCR results in abiotic dechlorination and supports anaerobic bacteria
- □ KB-1
 - Anaerobic consortium of dechlorinating bacteria
 - Includes dehalococcoides sp.
 - Requires ORP < -75 mV</p>

Field Pilot Data – CVOC rates

Full Scale

- EHC+KB-1 Full-Scale Implementation
 - 46 m x 21 m x 3 m PRB Source area only
 - Injected from ~12 34 m bgs
 - Supplemental upgradient areas
 - 200+ injection points
 - ~269,400 kg EHC
 - 1,831 L KB-1
 - Direct-push drilling
- 23 Performance Monitoring Wells
 - Group 1 Upgradient or within injection zone
 - Group 2 Downgradient of injection zone

tull Scale

TCE Results (ug/L)

		Pre-Injection	December	February	April	June	August
Well ID	Group ID	(Q4-08/Q1-09)	2009	2010	2010	2010	2010
W13-69	1	174,000	6 , 050	4,400	9,510	10,100	1 <i>,</i> 570
W30-96	1	80,900	90.7	83.2	22.2	21.3	18.9
W31-106	1	23,800	1.57	<0.3	<0.3	0.35	<0.3
W32-106	1	17,400	30.5	9.45	5.92	6.51	3.23
W32-76	1	44,500	51.6	52.1	66.9	43.2	7.3
W35-106	1	157,000	14.9	8.84	3.99	6.61	5.43
W33-81	2	21,400	92.2	160	64.8	24.4	20
W36-81	2	13,800	22.7	18.1	10.2	7.78	1.87
W39-101	2	120,000	7,800	7,780	4.88	6.31	4.37
		72.500	4 530	4 200	4 033	4 4 2 5	4.04
Mean		72,533	1,573	1,390	1,077	1,135	181

Subset of wells with pre-injection TCE > 11,000 ug/L

Results

- Remedial action objective is 11,000 ug/L
 - Threshold indicator for TCE DNAPL
 - 1 % of aqueous solubility limit
 - Achieved in less than 12 months
- TCE generally less than 100 ug/L
- Estimated 99.9% mass removal

Pathway Identification

- Mix of abiotic and biological pathways
- Evidence of abiotic degradation
 - Simultaneous decline of TCE/DCE/VC in some wells
 - Abiotic degradation products
 - Hydrogenation of chlorethenes to chloroethanes
 - Low concentrations but consistent
- Clear evidence of sequential dechlorination
 - Production of DCE isomers and VC

Pathway Identification - Abiotic

TCE DNAPL Remediation

- No TCE DNAPL observed
 - Elevated groundwater concentrations
 - 592,000 ug/L (direct-push)
 - 259,000 ug/L (monitoring well)
- Indirect evidence of TCE DNAPL
 - Mass balance using chloride?
- Evaluate entire source area data set
 - EVS estimates of 3-D source area volume

TCE DNAPL Remediation

TCE DNAPL Remediation

Observed Net Increase in Cl (M)	22,498
Net Theoretical CI from Degradation of CVOCs (M)	9,073
Difference (M)	13,425
TCE Equivalents (<i>M</i>)	4,475

- Mass balance example
 - Convert molar TCE/DCE/VC to molar chloride
 - Compare theoretical total CI (M) to observed
 - Difference implies degradation of TCE DNAPL
 - Includes degradation of desorbed TCE
 - Action implies accelerated desorption from non-aqueous phases(s) to aqueous phase

Summary

- Combined EHC+KB-1 is a demonstrated technology for TCE DNAPL
 - Abiotic and biological pathways identified
 - Both pathways demonstrated success
- Mass balance approach useful for identifying DNAPL degradation
 - CI data suggest TCE (or TCE equivalents) in nonaqueous phase or phases
- Removal mechanism
 - Accelerated desorption from NA phase
 - Destruction in aqueous phase

Acknowledgements

- Adventus Americas Inc.
- SiRem Laboratories

Questions?